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Application of fracture mechanics to 
heterogeneous systems- prediction of 
fatigue life of ceramics 
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Toyota Central Research and Development Laboratories, Inc., Aza Yokomichi, 
Oaza Nagakute, Nagakute-cho, Aichi-gun, Aichi-ken, 480-11 Japan 

A prediction of fatigue life and fracture stress of ceramics of a heterogeneous system 
was made by application of fracture mechanics based on stow crack growth. It was shown 
that the prediction of fatigue life and fracture stress in ceramics of heterogeneous system 
in general could be dealt with in a similar way to those of ceramics of a homogeneous 
system. Experimental examination of the validity of the prediction was made with LAS 
glass ceramics (Li20-AI203-SiO2) at various stages of devitrification as well as foamed 
glass. These results proved the validity of the formulae derived. 

1. Introduction 
Many works on the prediction of fatigue life in 
ceramics have been made successfully on the basis 
of the subcritical crack growth, and many useful 
formulae are presented. These works appear to 
be limited to ceramics of a homogeneous system. 
A substantial number of ceramics, however, belong 
to heterogeneous systems composed of crystals 
and glasses, crystals and voids, glasses and voids, 
and many kinds of crystals. Then, the study of 
fatigue life of ceramics with a heterogeneous 
system on that basis is very important. 

The aim of the present paper is to study the 
fatigue life and fracture stress of ceramics of a 
heterogeneous system on the basis of the sub- 
critical crack growth. 

2. Theory 
In ceramics of a heterogeneous system, each phase 
constructing the ceramic is randomly dispersed in 
the form of a particle, and a crack propagates 
through the phases. 

As the propagation speed is different from one 
phase to another, the crack front does not always 
follow a straight line. The averaged propagation 
speed, however, is thought to be nearly the same, 
and the crack front can be assumed to be straight. 
The speed or the fatigue life will be given by a 

suitable model in which each phase, in the form of 
a particle with an averaged size, is dispersed in 
proportion to the concentration of each phase. 
As a model, a slab form, in which two phases are 
dispersed regularly, will be dealt with for sim- 
plicity. The model is shown in Fig. 1. In the 
model, the phase, A, makes a particle of the size 
of 6A, and the phase, B, makes that of 6B. A 
crack with the length of a i is assumed to be 
located initially in the phase, A, whose depth from 
the surface is e. 

The crack propagation in ceramics of single 
phase is described by the following equation [1]; 

da 
v - - A K ~  -- A y n o n a  -n/~ (1) 

dt 

where v, a and t stand, respectively, for crack 
propagation speed, crack length and time, and 
A, KI, Y, o and n stand, respectively, for a con- 
stant depending on humidity and temperature, 
stress intensity factor, geometrical constant, stress 
and material constant. In most ceramics, Equation 
1 can well be approximated by the following 
equation [2]: 

;' 
a(2- n)/2 __a(2-n)/2 = A o ~  0 Y n f n ( t )  d t  

0 = aoC'(t) (2) 
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where ao stand for an arbitrarily chosen represen- 
tative stress and f(t)  is a function of time. In most 
cases, Y is independent of time, and it can be 
taken out of the integration. Moreover, ih many 
cases, o is a periodic function, and ao is con- 
veniently represented by the maximum stress, 
ore, in the period. 

Equation 2 holds inside each particle, and the 
fatigue life as well as the fracture stress is given by 
the successive application of the equation to each 
particle. On the assumption that the crack propa- 
gates from one particle into another without meet- 
ing any obstacle, the fatigue life, L~, is given by 
summing up the time needed for the crack to pass 
through each particle, tl, t2, t3 and so on, where 
tj represents the time to pass through the ]-ith 
particle, counted from the initial location of 
the crack. 

Lr = ~ t~. (3) 
j=l 

a!2-n A)/2 - -  (e + 5A)  (2-hA)/2 

- t  I 

= HAoNA j0 P dt 

(e + kA) (2-"A)/: -- (e + kA + 5A) (2-nA)n 

, ' { 2 k §  

= HAonmA JT2k fn  dt 

(e + kA - - 6 B )  (2-nB)/2 - -  (e -'l'- kA)  (2"nB)/2 

, ' t ~ k  
: HBOnB j fn dt 

-i2k-~ 
k 

: E 0  
.i=1 

A = ~A+SB 
f f  : 0 m f(t) (If(t)l ~< 1) 

k = 1 ,2 ,3  . . .  
14) 

where the suffixes, A and B, indicate that the 
variables with the suffix represent those referring 
to the phase, A or B. 

For a periodically changing stress, the initial 
and final time of the integration in Equation 4 
does not always agree with the beginning and the 
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Figure ] Geometry of slab model showing microstructure 
for ceramics of a heterogeneous system. 

end of the period. In practice, however, as the 
fatigue life is much longer than the period, the 
approximation of shifting the initial time of the 
integration to the beginning of the period and the 
final one to the end affects the result little. There- 
fore, Equation 4 can be written as follows: 

12! 2-hA)/2 - -  (e  --l-- ~A)  (2-hA)/2 

tl 

= HAOnA fof"dt 
(e + kA) (2-nA)/2 -- (e + kA + ~A) (2-hA)/2 

= HA oinn A N2k +1 ref f  

(e + kA - -  8 B )  (2-r iB)/2  - -  ( e  -~ kA) (2.nB)/2 

nB = HBO m N2kgeff 

j '~ fn dt Teff : 0 

t~ - Wjco 

i 
(s) 
(6) 

where N2k+l, N2k and co stand, respectively, for 
the number of the repeating periods needed to 
pass through the (2k + 1)-th particle, that of the 
2k-th one, and the periodic time. 

For static stress, Equation 4 gives the following 
equations: 

a~ 2-nA)/2 -- (6 q- ~A)  (2-hA)  

= HAOnA t l ,  s 

(e + kA) C2-"A)n - - (e  + kA + 6A) C~-"A)n 

nA = HAO m t2k+l ,s  

(e + k A  - -  6B) (2 -nB) (  2 - -  (e  + kA)  (2.nB)/2 

n = HB a~B t2k,~ ~7) 



where the suffix s, indicates that the variable 
represents that under static stress. 

From the comparison of Equation 5 with 
Equation 7, the following equation is derived for 
the fatigue life of  ceramics under the static stress 
of o,ll and that under periodically changing stress 
of the common maximum value of o m, 

From Equations 3, 6 and 8, the following 
equations can be given, for the ceramics in which 
IFAIa~ASA>> or ~I(~a~nBSB, or in which 

nA ~nB 
Lf, c = kcLf, s (9) 
k c = Lo/'ref f (10) 

where Lf,e and Lf, s represent, respectively, the 
fatigue life of  a ceramic under a periodically 
changing stress of  the maximum value of am and 
that of  the same ceramic under the static stress of  
am. The relation is substantially the same as the 
formulae connecting the static fatigue life and 
cyclic one, derived by Evans and Fuller [3] for a 
ceramic of homogeneous system. 

Equation 9 shows that the cyclic fatigue 
life of ceramics can be known from the static 
fatigue life of  the ceramics in which one phase 
contributes mainly, to the life, or/FA ~ 0"~A~ A >~ or 

~ B  1 am nB~B, or in which n A ---- nB, in a hetero- 
geneous system, too. But, Equation 9 does not 
always hold in a heterogeneous system, and the 
cyclic fatigue life can not be given only by multi- 
plying some constant to the fatigue life. This is 
one of the features of  a heterogeneous system. 

The fracture stress, of, can be given by sub- 
stituting Lf for the time in f(t) ,  or 

of = amf (Lf) (11) 

One of the most important applications of the 
equation is that for static fatigue life, as well as 
for fracture stress which occurs under a linearly 
increasing stress. Because the former is the basis 
of the prediction of the fatigue life, including a 
cyclic one, and the latter is frequently a measure 
of mechanical properties of  a ceramic. 

Lf,s can be given from Equations 3 and 7. 
Especially, for the ceramics of  small grains (6A, 
6 B ,~ e), Lf,s can be approximated as follows: 

1 
Lf,s - HAA arena [a[2-nh)n -- (e + ~ih) (~-nA)n] 

1 U,~.ln A '(~----7-T-'~ ] (e-]-'A"~'B) (2-nA)/2 +N \ 0 A * 0 B ]  

1 o~B ( t~B-) 
+ ~ 6A + ~iB (e + ~iA + 6B) (2-"B)/2. 

(12) 
For the derivation of Equation 12, the summation 
2;~= 1 (a + k/~) r was approximated by (~ +/~)e + 
f~ (,~ + x~) c dx. 

Equation 12 is useful to study the dependence 
of the fatigue life on the grain size. As seen in the 
equation, the fatigue life is much affected by grain 
size as well as the phase in which the initial crack 
is located. The phase is expected to be altered with 
the increase or the decrease of grain size. There- 
fore, the dependence of the fatigue life on grain 
size can not be expressed in a simple way, except 
for some special cases. 

Moreover, in Equation 12, when ai ~ e + 5 A, 
and  HAIClm"ASA'~HBIomnB6B, Lf,s can be 
approximated as follows: 

( ~B ) ~B)(2-nB)/2 Lf,s~ HBIOmnB ~ (C-I-~A+ 

(13) 
These approximated formulae, i.e. Equations 12 
and 13, hold well for a ceramic which is composed 
of fine particles (e >> SA, SB) as well as composed 
of one major phase and other minor phases 

(5 B : 0). 
In a foamed glass of  tow density, the pore size 

(SA) is much larger than the wall thickness (6B), 
then Equation 13 is rewritten as follows: 

Lf,s-H-~omn(~--a) a[2-n)n. (14) 

In these approximated formulae, the thtigue life 
is proportional to a ~ ,  which agrees well with the 
conclusion about the influence of the maximum 
stress on the life of  a ceramic in a homogeneous 
system. Then, SIT (strength-probabili ty-time) 
diagram [4] as well as T-SPT (thermal shock 
severity-probabili ty-time) diagram [2] hold for 
such ceramics: 

In (-- In P) = __m In N + m In g + Ct (SPT) 
n 

(15) 
In (-- In P) = n! In N + m In AT + C2 (T-SPT) /'/ 

(16) 

where P is the cumulative survival probability for 
the fatigue life, N, under the mechanical stress, e, 
or the thermal shock with the severity of AT and 
m and C1 and C2 stand, respectively, for Weibull 
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modulus and some constant depending on material, 
heating process and so on. But in exactness, the 
life is not always proportional to the power of  
cry,  mainly due to the difference in n A and riB. 
Moreover, in general, L~.s is not directly propor- 
tional to a} 2-n)/2. Therefore, the SPT diagram as 
well as the T-SPT diagram cannot be composed 
of  parallel lines in a heterogeneous system in 
general, even if the initial crack distribution 
follows the modified Weibull function ( p =  
exp [--V(ai/ao)-m/2]) [2, 5], which is responsible 
for the Weibull distribution in the fracture stress 
of  ceramics in a homogeneous system. On these 
points, a heterogeneous system differs from a 
homogeneous one. 

In addition, L,,s is dominated by the term 
relating to the phase, A, and that relating to the 
phase, B, which is shown in Equation 12. The con- 
tribution of  each term to Lf,s is influenced by the 
stress in a way different from A to B and the 
influence in A is different from that in B, because 
the crack propagation speed in each phase depends 
on stress in different ways. Then, strictly speaking, 
the depertdence of  L~,s on Om will vary with the 
stress, for instance, from o ~ A  to O~B and vice 
versa. It implies that the inclination of  curves or 
lines in SPT and T-SPT diagrams tends to vary 
with stress or thermal shock severity applied to a 
ceramic. This variation in the inclination is thought 
to be a feature in a heterogeneous system in con- 
trast to a homogeneous one in that the inclination 
is constant. 

In a similar way, the fracture stress of  a ceramic 
of  a heterogeneous system is given in a simple 
analytical form, when the speed of  crack propa- 
gation is much larger in one phase than in the 
other, or when the concentration of  one phase is 
much larger than the other. Thus, when e + 8 A >> 
8 B or e + 5B >> 8A, the fracture stress, of, is given 
by the following, 

I4I/(nA+I)A.1/(nA+I) [ .(2- nA)/2 Of -- ~'A u ["i 

] 1/(hA+l) 

- - (e  + 8A)(a-~A)/21 

(e + 8B >>SA) 

[ ~ \ l / (nB+l)  
H1/(nB+l)dl/(nB+l)l_ B o,-  B 

x (ai + 8B) (2-nB)/2(nB+l) 

(e + ~A>~6B, a i ~ e  -F ~A). (17) 

In any case, the fracture stress is proportional 
to d 1/(n+1) in the approximations, and the manner 
of  dependence of  the stress on d is the same with 
that in a homogeneous system. 

Equation 17 can be applied to the fracture of  
a ceramic in which one phase is present as a 
majority, or the crack propagation speed is very 
low in one phase, or many voids present. 

3. Experimental details 
To examine the validity of  the formulae, some 
experiments on glass ceramics and foamed glass 
were made. The glass ceramics (Devitron) and 
foamed glass (Celoam) were supplied by lshizuka 
Glass Co., Ltd. and Toyoda Weaving and Spinning 
Co., Ltd. Their compositions and typical proper- 
ties are listed in Table I. 

Their materials were submitted to thermal and 
cyclic fatigue life measurements, and fracture 
stress measurement. 

The dimensions of  the glass ceramics specimen 
are 4.3~b x 70ram 2. The specimen was received as 
a glass rod, and before the measurement it was 
heat treated for devitrification. Those of the 
foamed glass are 21 m m x  21 mm x 100ram. The 

TABLE I Composition and typical properties of specimens 

Properties Material 

Glass ceramics 
(Devitron) 

Foamed glass 
(Celoam) 

Composition 
Crystalline phase 
Density (g cm -3 ) 
Thermal expansion coefficient (~ C) 
Thermal conductivity 
(calcm 71 sec -1 o C-l) 
Young's modulus (kg cm -~) 

Li20, A1203, SiO 2 
3-Spodumen 
2.49 
2.98 X 10 -6 

4.7 • 10 -3 

8 X lO s 

SiO2, Na20, MgO 
None 
0.195 
8 X 10 -6 

1.4 • 10  -4 
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Figure 2 T-SPT diagram for glass 
ceramics at various stages of 
devitrification. Parameters in 
each figure indicate thermal 
shock severity, AT. Linear lines 
are obtained by linear regression 
analysis. 
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density of  this glass is 0.195-+0.05 gcm -3 and its 
pore size is about l mm in average. 

Thermal fatigue test was made by water quench- 
ing, which was described in a previous paper [2]. 
For this purpose, nine specimens held on a stage 
were heated in a furnace of  a finely controlled 
temperature and they were rapidly transferred 
into water of a constant temperature, 30 ~ C. The 
ends of  each specimen were protected with tubes 
yarned with glass fibre to prevent them from the 
initiation of  failure. The life of  the ceramics was 
determined by the occurrence of  fracture. The 
maximum number of  repeated thermal shocks 
given to the specimens was limited to 400 cycles 
in this experiment. 

The fracture stress of  glass ceramics was also 
measured by 3-point bending with a crosshead 
speed of  0 . 5 m m m i n  -1 and a span of  30mm in 
length. 

Foamed glass was also used for the examination 
of  the dependence of  fracture stress on the stress- 
ing rate. The fracture stress was measured by 
3-point bending with a crosshead speed from 0.05 
to 5 mm min -~ , and a span was 80 mm in length. 

The cyclic fatigue life o f  foamed glass was also 
determined by 3-point bending in a controlled 
atmosphere (relative humidity: 60%, temperature: 
23 -+ 2 ~ C). In bending tests, the span was 80 mm. 
The stress was applied by the way of  a triangular 
function, whose cyclic period is 6sec. The peak 
stress was varied from 0.106 to 0.126 kgmm -2. In 
the test as well as the fracture stress measurement, 
asphalt impregnated felts of  0.5 mm in thickness 
were placed between the specimen and loading 
points to prevent stress concentration at the 
contact point. 

The cumulative survival probability, P, for the 
stress of  oi or the life of  Li was calculated as 
follows: first all data are arranged in the order of  
the value of  fracture stress or fatigue life. The 
number, i (rank) is given for the datum which is at 
the i-th order in the data arranged as explained 
above. And the survival probability, P, for the 
stress, oi or the life, Li, was calculated by the 
following equation, 

i - -  0.3 
P - -  1 (18) 

J +  0.4 
where J stands for the number of  the samples. 

4. Results and discussion 
The fracture stress of  glass ceramics increased 
with the temperature of  devitrification. For 
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TABLE II Phases detected by the X-ray diffraction 
analysis in glass ceramics at various stages of devitrification 

Heat treatment Phase 

T600:600 ~ C X 2 h (annealing) Glass 
T850: 850~ X 2 h 13-Spodumen, Glass 
TI100: 850~ C • 2h -~ 

1100 ~ C X 2 h j3-Spodumen, Glass 

example, the averaged fracture stress is 18.4, 19.4 
and 28 .4kgmm -2, respectively, for T600, T850 
and T1100 (Table II). 

Thermal fatigue life-survival probability curves 
(T-SPT diagram) for glass ceramics at different 
stages of  devitrification are given in Fig. 2. The 
X-ray diffraction analysis reveals that the speci- 
mens consists of  a crystalline phase as the major 
phase and glass as the minor one. The size of  the 
dispersed crystalline phase was about 0.1 
0.7~tm which is much smaller than a usual flaw 
size (30~100 /1m) .  The phases detected are 
listed in Table II. According to the previous dis- 
cussion, the crack growth in the specimens is 
mainly controlled by the crystalline phase. As 
shown in Figs. 2b and c, the specimen containing 
crystalline phase (T850, T l l 0 0 )  behaves in a 
different way from that of  glass. The value of  n 
estimated from the diagram is about 25 and 29 for 
the specimens heated at T850 and T l l 0 0 ,  res- 
pectively. These values are a little different from 
that of  glass, 20. 

The T-SPT diagrams for glass ceramics are com- 
posed of  lines running parallel except for the glass 
ceramics heated at T1100. The parallelism of the 
lines proves the presence of  a major phase con- 
trolling the crack growth as well as the validity of  
the analysis. The T-SPT diagram for the glass 
ceramics heated at TI 100 shows that the inclination 
of  lines varies gradually with thermal shock 
severity (Fig. 2c). Similar variation in the inclina- 
tion has been shown in the T-SPT diagram for 
sintered mullite [2], which is composed of  a glassy 
phase and  a crystalline phase, too. The variation in 
the inclination is thought to reflect the feature of  
a heterogeneous system as discussed previously. 

A clear criterion for the change from the 
paraltel lines in the T-SPT diagram (Fig. 2b) to 
unparallel lines in the diagram (Fig. 2c) is not 
known in this study. 

The fracture stress distribution of  foamed glass 
is shown for various crosshead speeds in Fig. 3. 
Weibull parameters determined from the figure 
are 17.9, 16.0, 14.8 and 19.8 for crosshead speeds 
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of  0.05, 0.2, 0.5 and 5 m m m i n  -1 , respectively. 
Fracture stress for P = 0 . 5  are 0.111, 0.119, 
0.121 and 0 . 1 3 5 k g m m  -2, respectively. The 
dependence of  the fracture stress for P = 0.5 on 
crosshead speed is shown in Fig. 4. As shown in 
the figure, In af is proport ional  to In (crosshead 
speed). This result agrees well with the conclusion 
mentioned previously. The value of  n determined 
by applying Equation 17 to the figure is about 24. 
This value agrees well with the literature value [6] 
of  glass. These results are thought to prove the 
validity of  the formulae, also. 

The survival p robab i l i ty -cyc l i c  fatigue life for 
foamed glass is given in Fig. 5 with the peak stress 
as a parameter.  The linear lines in the figure were 
obtained by the linear regression analysis. The 
lines for various peak stresses run parallel to one 

another. The parallelism agrees well with the result 
of  the present approximated analysis. Weibull 
parameters for various peak stresses and the n 
value determined from Fig. 5 using Equation 15 
are given in Table III. Weibull parameters deter- 

mined from the cyclic fatigue test agree well with 
those from the fracture stress test (17.1 on average). 
Moreover, the value of  n determined from the 
cyclic fatigue test agrees rather well with that 
determined from the dependence of  fracture stress 
on stressing rate. These results and the parallelism 
in the cyclic fatigue test, are thought to prove the 
validity of  the formulae given in the present study. 

As shown above, the fatigue life as well as the 
fracture stress in a heterogeneous system can be 
dealt with in a similar way to that in a homo- 
geneous system in some cases. But according to 
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the formulae derived in the present work,  it can 

not  be done when crack length is o f  the same 

order with the dimensions o f  the grain size, and 

when a ceramic is composed  o f  many phases o f  

different  crack propagat ion speeds and when 

the concen t ra t ion  is o f  the same order.  In such 

cases, a more  tedious analysis including some 

numerical  calculat ion for Equat ion  1 would  be 

needed.  

TABLE 1II Weibull parameters and n value determined 
from cyclic fatigue test for foamed glass 

Peak stress Weibull n 
(kg mm-2) modulus, m 

0.126 22.4 
0.122 21.5 
0.116 19.7 
0.110 20.6 
0.106 18.0 

15.8 

5. Conclusions 
1. Some formulae for the predic t ion  of  fatigue 

life o f  ceramics o f  a he terogeneous  system are 

given on the basis of  slow crack growth.  

2. The formulae are proved to be valid by the 

exper iments  on glass ceramics and foamed glass. 
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